Breaking Down Electrostatic Technology:

Everything You Need to Know

Breaking Down Electrostatic Technology: How Do Electrostatics Work?

Article by Ben Walker, Chief Strategy Officer, ManageMen, Inc., Cleaning Industry Expert Katherine Velez, Ph.D., Sr. Scientist, Clorox Healthcare - January 18, 2021

View full-text here


When the COVID-19 pandemic began, cleaning and disinfection became top of mind for facilities and the people who occupy those spaces. Many facilities are now required to incorporate daily disinfection into their routine cleaning practice, which often means adding additional frequencies, labor, products and technologies to their operations. Electrostatic sprayers are one such technology that many facilities have turned towards to help meet the demand to disinfect more frequently in less time. Before investing in this technology, it is important to understand what electrostatic spraying is and how it is different from other application methods on the market.

Electrostatic spraying works by charging liquid droplets as they pass through a nozzle. The resulting charged droplets actively seek out surfaces. Once droplets reach their target surface, they stick to the surface and the charge dissipates. Because the droplets all hold the same charge, they repel one another, causing them to spread out and cover surfaces evenly. This enables facilities to apply disinfectants in less time and with better coverage compared to other application methods.  

When comparing electrostatic sprayers to other spray technologies like foggers, pump sprayers, and trigger sprayers, there are a few big differences. The main difference is that the disinfectant droplets are charged. Foggers can distribute disinfectants more evenly than a trigger or pump sprayer, but the disinfectant coming out of these devices is uncharged, which means that some surfaces may be missed. Charging disinfectants means that electrostatic sprayers can cover more surfaces in less time. Additionally, electrostatic spraying provides extra assurance that disinfectant will deposit on all sprayed surfaces, including curved or oddly shaped objects that can be difficult to cover with other spray technologies.

Another key difference is droplet size. Trigger and pump sprayers emit large droplets that are generally not respirable meaning that droplets are too large to be inhaled into the lungs. Electrostatic sprayers emit droplets that are slightly smaller than a trigger sprayer but are still above respirable range. Some disinfectants may not require any additional personal protective equipment (PPE) to spray them through an electrostatic sprayer, while others may require PPE. Foggers typically emit very small droplets that fall inside respirable range meaning that inhaled droplets could reach the deep lung. For this reason, humans cannot be present in the room during fogging without extensive PPE and room vents must be sealed prior to fogging. Foggers also typically require long wait times (up to two hours) before people can re-enter a treated room.

There are a number of additional technologies you may encounter when researching electrostatic spray technologies. For example, there are devices that emit UV light to kill pathogens on surfaces, surfaces embedded with antimicrobials, and air purification systems. These devices all have their place and may be a good addition to your disinfection practice. However, it is important to understand the limitations of these technologies before investing. For example, how the device fits into your current operating workflow for cleaning and disinfecting, how you will disinfect the spaces these devices cannot reach, and the staffing requirements for these devices.

In turn, you should always consider the entire process when considering these devices, the potential benefits may not outweigh the cost of adoption and maintenance.

Electrostatic spraying can be a great way to help facilities meet the increased need for disinfection, but it is important to choose the right technology for the right job. When choosing technologies to add to your cleaning and disinfection portfolio, consider the following:

  • Decide what areas of your facility could benefit most from those technologies.
  • Update your cleaning and disinfection schedule to incorporate the technology in a way that will maximize the benefit.
  • Communicate the plan to your supervisors and roll it out to staff as part of a robust training program. Once you have a plan in place, you can communicate your efforts to the people using the facility to give them assurance that you are doing everything you can to help keep the spaces they use safer.

Whichever disinfecting technologies you choose to add to your operation’s inventory, ensure the technology has documented evidence to support its use in practice and has been approved by the EPA for use. Look for studies to demonstrate real world reduction of microorganisms on surfaces. For electrostatic sprayers, make sure the disinfectant you’re using has been approved for use with an electrostatic sprayer by the EPA. Studies will also support EPA-approved claims that appear on disinfectant product labels as well as provide extra assurance that you will get the intended result when using the sprayer in practice.


Public Health Center Resource Library Submit a Question Contact a Public Health Pro Community

This site uses cookies to provide you with the best user experience. By browsing this site, you accept the use of our cookies. LEARN MORE

YES, I ACCEPT